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AbsCract-The thermomechanics of porous solids including the implications of the second law of ther
modynamics are studied through application of a mixture theory. This derivation suggests that the pore
collapse relation should express the rate of change of either the volume fraction or the distention ratio as an
odd function of the difference between the pressure and an equilibrium pressure. An example problem is
solved for the dynamic compaction of 78% dense porous aluminum.

I. INTRODUCTION
Porous solids are capable of absorbing large quantities of energy during impact loading. For this
reason the behavior of these materials at very high rates of strain is of substantial interest to
engineers. Further proof of this can be seen by examining the technical literature on this
subject; for example see Refs. [1-6]. Examination of these works will show that they are
concerned mainly with questions relating to the mechanics aspects of this problem; i.e. the
conservation laws of mass, momentum, and energy. As an example we note the discussions on
scaling rules which relate the effective or actual stresses in the solid to the partial stresses
which appear in the balance of momentum; see Morland[7] and Garg[8]. Much attention is also
paid to formulating pore collapse relations which describe, by means of a constitutive relation.
the manner in which the pores close during irreversible crushing of the material.

The word i"eversible as used in the preceding sentence brings us to the key point of this
paper. While investigation of the mechanics aspects of this problem is a difficult and obviously
an important part of the total problem, a complete treatment of the problem requires an
investigation of the implications of the entropy inequality of the second law of ther
modynamics. We wish then to present a thermomechanical treatment of the problem.

Two advantages of this approach are, a clearer understanding of the assumptions which
result in the usual scaling laws for stress, and an entropy production constraint which applies to
the collapse relation. This latter constraint implies that the collapse relation must be stated as a
constitutive relation for the material volume fraction rate. This differs from Garg et al. [2] who
have used the volume fraction itself rather than its time rate of change to represent the collapse
process. Also some resemblance between the rate relation proposed in this paper and the one
proposed by Davison[3] is evident; however, Davison's relation is for the material strain and
not the volume fraction.

The key to the derivation in this work is to view the porous solid as a mixture consisting of a
solid and a vacuum. This viewpoint allows us to draw on the previous work of Truesdell[9],
Miiller[IO], and Bowen and Garcia[ll] who gave extensive treatment of the second law of
thermodynamics as embodied in the mixture analog of the Clausius-Duhem inequality. The
previous work of Garg et al. [2] has some precedence in this instance since they treated a
fluid-saturated porous material by means of amixture theory. Their work is based on the
mixture theory of Green and Naghdi[12]; however, Garg et al. do not treat second law
questions.

The thermomechanical mixture theory originally suggested by Truesdell contains balance
laws of mass, momentum, and energy which have changed little from their original forms. Not
surprisingly as pointed out by Truesdell [9] the real debate has been waged about the question
of the appropriate application of the second law of thermodynamics.

tThis work was supported by the U.S. Department of Energy.
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This debate was mostly resolved with the publication of Muller's paper[lO] in which he
showed that density gradients must be included in the list of independent or primitive
constitutive variables in order to achieve consistency with the second law. In effect he showed
that Fick's law which describes long-time atomic level diffusion driven by concentration
gradients must be used to remove inconsistencies in the description of entropy production in
the mixture.

Superficially this seems to preclude the use of a mixture theory for the purpose of modeling
a porous solid. One seems to be faced with the prospect of rationalizing the application of
Fick's law to some type of diffusion process in porous solids. However, as we will show this
problem can be overcome. In essence the need for the inclusion of density gradients can be
removed by introducing the concept of volume fraction.

On a physical level this implies a microscopic separation between the constituents of the
mixture. More directly said, the porous solid will be modeled by a theory for an immiscible
mixture, whereas MOller's conclusions apply only to miscible mixtures in which microscopic
separation does not exist and where volume fraction has no meaning.

Here we should mention that the spirit of this concept is also present in the work of
Trapp[l3] and Garg et al.[2]; however, since these works did not include a treatment of the
second law, the question of density gradients was not discussed. Furthermore Trapp's work
was for a purely mechanical system.

In the next section we will present the formulation for a binary mixture which is specialized
to immiscible systems. The properties of volume fraction, partial density, and actual density
will be defined. In keeping with the assumption of immiscibility the thermodynamic potential
functions of each constituent will depend only on the properties of that constituent and not on
the properties of the neighboring constituent. We also include a discussion in this section on the
need for the thermodynamic potential to depend on the volume fraction if one wishes to
describe a mixture with different constituent pressures; that is, a mixture which is not required
to obey Dalton's law for partial pressures.

The third section presents a specialization of the mixture theory to the porous solid. This is
achieved by allowing the pressure and density of the vacuum constituent to reduce to zero. The
interface pressure between the constituents is also zero; however, the volume fraction is
obviously not zero. The individual velocities are assumed to be equal so that the pores travel
with the solid. The results of this section yield a complete set of balance relations for mass,
momentum, and energy and a set of material response functions constrained by the entropy
inequality.

In the fourth section an example problem is given which treats the compaction of porous
aluminum. A conventional Lagrangian wave propagation code is used to solve the resulting
equations, and the numerical results are compared to the transmitted wave profiles from
one-dimensional-strain plate-impact experiments on 78% dense porous aluminum reported by
Butcher et al. [6].

The paper will conclude with a summary which in part will discuss the importance of the
theoretical developments, especially the entropy inequality constraint, in the context of other
porous material models.

2. THE MIXTURE THEORY

In this section, the field equations and entropy inequality of the mixture theory proposed by
Truesdell, MOller, Bowen and Garcia will be stated in one-dimensional form with the stress in
each constituent being described simply as a pressure. As a prelude to this statement several
minor points of notation and kinematics must first be clarified.

At every point within the. mixture we will speak of average properties of both constituents.
Variables such as position, velocity, or entropy will have a subscript; either 1, 2, a, or fJ. The
first two subscripts denote constituents 1 and 2. Whenever subscript a appears, the equation is
an abbreviation for two separate equations; the first with a =1, and the second with a =2.
Under these conditions when fJ appears, it acquires a value opposite to that of a.

The reference configurations for each constituent are given by X.., and the current positions
of the material particles originally at X.. are

x = X..(X.., t) (1)
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where t is the time. The material velocities are

v.. =x..(X.., t)

where the dot denotes a partial derivative with respect to time.
For an arbitrary function r .., the time derivative following the motion {3 is denoted as
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(2)

(3)

where the subscript ,x denotes a partial derivative with respect to position. If we consider the
time derivative following the motion of a, then the abbreviated notation will be used such that

(1'..).. =: 1'.. =f .. + v..r a,x. (4)

The derivation of the field equations for conservation of mass, momentum, and energy
follows conventional lines; that is, the change of a given quantity such as mass within a fixed
volume is equated to the flow of that quantity across the surface of the volume. For a binary
mixture three sets of field equations result representing conservation statements for each of the
individual constituents plus also the total mixture.

Application of the principles of conservation of mass, momentum, and energy for each of
the constituents result in the following six relations

P.. +P..V...x =0

P..V.. = T...x +p..b.. +p..
(5)

(6)

(7)

where P.. is the partial density (as opposed to the actual density); that is. the mass of
constituent a in the control volume divided by the total volume occupied by both constituents.
b.. is the specific body force. r.. is the specific external heat supply. q.. is the heat flux in
constituent a. e.. is the specific internal energy of constituent a. T.. is the driving force in
constituent a which as we will see shortly is not equal in magnitude to the constituent pressure.
Finally, p.. and E.. represent momentum and energy production terms associated with the
exchange of momentum and energy between the neighboring constituents by means of effects
such as diffusion drag and heat conduction. If p.. and E.. are zero, these equations assume forms
identical to conventional continuum conservation laws. They are decoupled into two separate
sets of field equations where each constituent behaves independently. In the most general case
we should also have included a mass production term in each of eqns (5) to account for the
possibility of mass exchange during chemical reactions; however, this is an extremely compli
cated and presently unnecessary addition to the formulation, therefore, it will be omitted.

To complete this system of conservation laws, the analogous conservation relations for the
total mixture must be included. Truesdell [9] has shown that these conservation relations are
equivalent to

P.+P2 =0

PI VI +P2V2+E. + E2 = 0

(8)

(9)

where because chemical reactions have been omitted the mass relation is trivial. Thus the
momentum and energy lost by constituent 1 must be gained by constituent 2.

While some of the terms appearing in eqns (5H9) must still appear to the reader to be
vaguely defined, we hope to clarify them later in the paper.

Besides the material response functions which we will set aside for the moment, there is one
remaining law to apply to the mixture, the entropy inequality of the second law of ther
modynamics. As stated in the introduction, this is surely the most disputed issue in the field of
mixture mechanics. Presently the most popular notion is that only one inequality need be stated
and applied to the total mixture. This inequality is then considered as a constraint on the
response functions of the constituents; that is, for any and all possible solutions at a point in the
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mixture regardless of the associated boundary conditions, the response functions must be
chosen so that the entropy inequality is satisfied. The entropy inequality most commonly used
to derive these constraints is the mixture at analog of the Clausius-Duhem inequality,

(10)

where 1/a is the specific entropy and ea is coldness or inverse of the temperature.
Usually, the system of equations just described is closed with a set of response functions.

The major remaining question then concerns the choice of the primitive or independent
variables affecting the response of the mixture. This list may include, for example, the partial
densities, coldnesses, coldness gradients, and material velocities. As discussed earlier Muller
also proposed that the spatial gradients of the partial densities be included in this list. He
showed how the constraints imposed by the entropy inequality on miscible mixtures lead to this
conclusion. Without inclusion of this variable the properties of one constituent could not
depend on the state of deformation in the neighboring constituent.

However, in the present work, we will show that for immiscible mixtures the use of density
gradients is not required. We will illustrate this by developing a set of response functions for
the immiscible mixture which satisfy the entropy inequality. The list of primitive variables will
include the actual densities and not the partial densities, the coldnesses, the coldness gradients,
the velocities, and a new set of variables, the volume fractions.

The introduction of volume fractions into the list of primitive variables is crucial to the
development of a theory for immiscible mixtures and our special immiscible mixture, the
porous solid. To define the volume fractions we must recall the distinction made earlier
between the partial and actual densities. If the actual density; that is, the mass of the
constituent divided only by the portion of the control volume occupied by that constituent, is
denoted as pa, then the volume fraction is

(ll)

where we also have the obvious constraint that

(12)

The next step towards the immiscible mixture formulation is the introduction of a special
, term into the energy production function. This term represents the work done on a constituent

by its neighboring constituent when the volume fractions change. Garg et al. use a similar term
in their formulation. We will also introduce a term representing energy exchange due to friction
or viscous drag as the constituents move relative to each other; i.e. diffuse. Finally, we will also
allow an energy exchange by heat conduction. Thus

Ea = - POlPa +Da(Va - VII) +(-ltQ (13)

(14)

where the terms represent, respectively, the volume fraction working, the diffusion drag
working, and the interconstituent thermal exchange. The new terms introduced here are: Po, the
interface pressure or the average pressure with which one constituent pushes on its neighbor;
Da , the diffusion drag function equal to the drag force reduced by the percentage of the total
drag heating absorbed by constituent a; and Q, the rate or flux of heat from constituents 1 to 2.

At this point eqns (8), (9) and (13) can be solved for Pa to obtain

Pa = (DIl - Da ) + PO'Pa.x.

The second term on the right hand side of (14) is also present in Trapp's work. Equation (14)
can be used interchangeably with eqns (8) and (9).

Next our immiscible mixture formulation will require a thermodynamic potential function
for each constituent. Since we wish to use densities and coldnesses as primitive variables and
since an entropy formulation seems more convenient than an internal energy formulation, the
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Massieu potentials Aa will be used. They are usually defined by means of the following
Legendre transformations:

(15)

From Muller, Bowen and Garcia it is known that Aa cannot be a function of the coldness
gradients or the velocities. Also by our definition of an immiscible mixture the functional
dependence of Aa is limited to the primitive variables of constituent a; that is A. is a function
of Ph but not of P2. Thus the functional dependence of Aa is limited to

(16)

Obviously, Aa differs from a conventional thermodynamic potential since tpa appears in the list
of primitive variables. This is appropriate since eqn (16) must reflect the nature of the mixture.

Here tpa should be cOllsidered a microstructure variable, a variable which represents the
local heterogeneous nature of the mixture. In general, convincing arguments can be made for
extending the list of variables to include even more microstructural effects. Such a move is in
many cases appropriate; however, for the present purposes the volume fractions alone will
prove to be sufficient. In the other direction we will show that omission of tpa from the list
would render the resulting theory useless for modeling porous solids.

Familiarity with conventional thermodynamics leads us to expect that the partial derivatives
of (16) should be identified with certain physical parameters. Thus as in conventional formula
tions we define the following relationships:

- 2 a
Pa =9

Pa -a-Aa
a Pa

(17)

(18)

where Pa is the local averaged pressure in constituent a. Indeed Muller, Bowen, and Garcia
have shown that (18) must always hold. While we have defined the partial of Aa with respect to
Pa as the constituent pressure and the partial of Aa with respect to 9 a as the specific internal
energy, the partial of Aa with respect to tpa is still undefined. This derivative does not have a
counterpart in conventional thermodynamics; however, it does have an important meaning
which will be discussed later.

We can now list the complete set of material response functions for the immiscible mixture.
They are

Q=Q(--

(16)

(19)

(20)

(21)

(22)

(23)

(24)

where the reasons for casting eqns (24) as rate relations will soon become apparent. Also note
that requirements of functional indifference under coordinate frame translation restricts the
functional dependence of the response functions to V.- V2 and not VI and V2 separately.
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As discussed earlier, the entropy inequality (10) places constraints on these relations. For
example, we will show that the functional dependence of Ta cannot be as general as that stated
in (20). To examine these constraints the chain-rule expansion

,~a Aa ,a
Aa = Pa r Aa +~a ala Aa + 'Pa -a AaPa C a 'Pa

and the identity

, Pa Pa ~
'Pa =7"-~Pa

Pa Pa

obtain from (11) are substituted into (10) to obtain

±{- 9 a Pa(Ta+ 'PaPa) + [9a<Pa - Po) +Pa -aa Aa],pa
a=\ Pa 'Pa

(25)

(26)

(27)

where eqns (5), (7), (13), (17) and (18) have also been used.
According to the arguments of Coleman and Noll[l4], it is possible to find a family of

admissible solutions to this theory where all terms in (27) save Pa are constant, and for which Pa
vary between arbitrarily large positive and negative values. Thus the coefficients of Pa must be
zero to ensure that (27) is always satisfied. Therefore

Ta = -'PaPa (28)

and the number of independent response functions is reduced by two.
Relations (28) are the scaling rules between the driving pressures in the momentum relations

and the actual constituent pressures. They result directly from the assumption that the mixture
is immiscible and the assumption that Pa is not a primitive constitutive variable. The im
miscibility assumption implies that the 'Pa exist and (16) hold. The omission of Pa as a primitive
variable excludes rate-dependent materials. Thus no reason exists which would substantiate the
a priori use of (28) for rate-dependent materials.

The remaining inequallty can be satisfied by the sufficient but not necessary conditions that

(29)

(30)

(31)

(32)

Relations (29) yield several important results. First the coefficient of ,pa is not required to be
set to zero as was the case with Pa. This is due to the manner in which (24) was used to
establish a functional link between ,pa and the primitive variables. Consequently if ,pa is omitted
as a constitutive function and instead replaced with some other constitutive relation, the
coefficient of ,pa in (29) would have to be zero. Then for example if Aa were not a function of
'Pa, (29) would require that Pa =Po. All pressures would be required to be equal. Finally (29)
suggests the previously mentioned nature of the partial derivative (a/a'Pa)Aa. This will be
discussed in complete detail in the next section.

The remaining relations (30H32), reveal quite conventional requirements. Firstly, both
(30) and (31) require that heat flows from hot to cold. Secondly. (32) requires that the diffusion
drag must oppose the relative motion of the constituents.
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In the next section to derive the theory for the porous solid many of the complications
treated in this section will be eliminated; however, we have retained the generality up to this
point to establish one extremely important fact concerning the inclusion of lpa in the list of
primitive variables. To do this we first make the following assumptions:

Aa = -8aea <pa, lpa)

qa =0

ra =0

Q=O

Da=O.

(33)

This in effect reduces the theory to a purely mechanical system. No heat can flow or be stored
in the mixture.

By using (5), (13) and (28) the energy eqns (7) become

'_ p (Pa) P'Paea - lpa a Pa - olpa'

We then consider the chain-rule expansion of ea which is

). ~ a ,a
~a = Pa?ea + lpa -;--ea

uPa ulpa

where substitution of (17), (26) and (33.) gives

, p (Pa) p' ,a
Paea = lpa a - - alpa +Palpa -a ea'

Pa lpa

Combination of (34) and (36) finally yields

a
Pa - Po = Pa -;-- ea'

ulpa

(34)

(35)

(36)

(37)

If we now recall the discussion of the functional dependence of Aa , eqn (37) clearly shows the
penalty for om.itting lpa from the primitive variables. If lpa were omitted, the right side of (37)
would become zero. Consequently,

Pa=Po
or

(38)

that is, both constituents would have to remain at equal pressures. Our first step in deriving the
porous solid model will be to set Po to zero. This would reduce the theory to a trivial set of
equations unless lpa is retained as a primitive variable in eqns (16). Is interesting to note the
parallel between this argument and the discussion immediately following eqns (29).

3. A ONE·CONSTITUENT MIXTURE

The porous solid
The porous solid is considered simply as a mixture of solid and vacuum. To derive the

theory for this special case we first require the interface pressure acting between the solid and
the vacuum to be set identically to zero. Also all parameters associated with the vacuum except
volume fraction and velocity are set to zero. The velocities of the constituents are equal. In
addition, we can drop the subscript on the remaining parameters for the solid. Under these
conditions the equations of mass, momentum and energy become

P+pV... =O (39)
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pV = -(fPPl,x + ph

pe'= - fPPV.% - q.x + pro

(40)

(41)

Looking at these equations alone one might at first wonder why we have gone to all this trouble
to derive what appears to be the conventional conservation laws of continuum mechanics.
Closer inspection, however, reveals several significant differences. Firstly, the product of the
pressure and the volume fraction, instead of the pressure alone, appears in (40) and (41).
Questions concerning, for example, the placement of fP inside or outside the spatial gradient in
(40) are resolved. Secondly, the density terms appearing in these relations are not the actual
density of the solid but the partial density which also includes the volume of the pores. Thirdly,
these conservation laws are paired with the entropy inequality constraint.

The entropy inequality restrictions become

( p +£1.. A)¢ ~o
8 afP

q8.x ~O.

(42)

(43)

Relation (43) still places rather conventional constraints on the heat conduction law; however,
relation (42) is a new constraint which holds important implications. To investigate these
implications we first restate the necessary response functions from the model. They are

A = A(p, 8, fP)

q =q(p, 8, 8.x, fP)

¢ = ¢(p, 8, 8.%, fP).

Now we can define equilibrium conditions to exist when

(44)

(45)

(46)

¢=q=O (at equilibrium). (47)

Therefore, (42) and (43) are identically zero at equilibrium. Also the terms on the left side of
these inequalities must be at a minimum if the equilibrium condition is to be stable. To obtain
the requirements for stable equilibrium, we first consider an equilibrium point defined by Pn 8 ..
and fP•• Then if the system is'perturbed to some neighboring point P, 8, fP so that

the system will be stable if

p=p.+8jjo

8=8.+880

[(p+£1.. A )cP] =0
8 afP .a

[q8.xla = O.

(48)

(49)

(50)

By expanding the derivative of the products in (49) and (50) and by using (47), we arrive at
the conditions

( p +£1.. A)cPO = 0
8 afP

q.a8.x =0.

The least restrictive conclusions from (51) and (52) are

(51)

(52)
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P iJP=---A
8 iJcp

8 ... =0.
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(53)

(at equilibrium)

(54)

Again (54) is a conventional requirement; however, (53) defines an equilibrium pressure p.q so
that

(55)

Thus the remaining partial derivative of the thermodynamic potential function has been defined.
We now rewrite (42) to obtain

(56)

which is an extremely important result. We see that the overpressure term, P-Peq, in this
inequality is zero at equilibrium and thus the entropy inequality is satisfied trivially at
equilibrium. Furthermore, away from equilibrium, eqn (56) can only be satisfied if f is a response
function which is an odd function of the overpressure and has the same sign as the overpressure.
pressure.

We again emphasize that (56) requires f to be the pore collapse relation. One might well
suspect that in (24) we dictated f to be the collapse relation; however, had we chosen some
other dependent variable for (24), it would have been impossible to satisfy (56) unless the
overpressure was identically zero for all situations.

4. EXAMPLE PROBLEM

(a) The response functions for the compaction of porous aluminum
As a practical illustration of the results derived in the previous sections, a specialized 'set of

response functions will be derived for a porous aluminum. These response functions together
with the field equations will be solved numerically and comparisons will be made to experimen
tal data.

We again emphasize that the previous results encompass a general thermodynamic
response; however, for the purpose of illustration a thermodynamic potential will be assumed
which eliminates many possible thermal effects. The form of the Massieu function we will use
IS

which from (17) and (18) gives

A = -8E(p, cp)+ C(8)

e =E(p, cp) - C(8),8

P = p2 :p E(p, cpl.

(57)

(58)

(59)

Thus the solid can store heat; however, the pressure is not sensitive to the temperature. From
(55) we also have

Peq = pcp :cp E(p, cp). (60)

To ensure that the inequality (56) is identically satisfied for all possible material ~sponses
during compaction, we require

. _{O; P < PCR or cp = 1
cp - K(p, 8, 8..., cp)(P - Peq)211+I; P ~ PCR and 0< II' < 1

(61)
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where K is a positive definite function, n is a positive integer, and PeR is an arbitrary constant
pressure defining the onset of crushing.

We next note that P and Peq are both derived from the same potential function. Thus the
relationship we chose for P will affect Peq•

Therefore, if the pressure is given as

(62)

where F is a positive constant and if is the initial density, then (59) can be integrated to yield

(63)

where h(cp) is an arbitrary function of cpo Equation (60) then requires that

(64)

For completeness and with anticipation of the equilibrium experimental data used to
prescribe (64), we assume a form for h(cp) so that

(65)

where k, k to and k2 are constants. It is seen that this choice for Peq has a singularity at cp = I.
We could have chosen a form without such a singularity. The form used in (65) simply reflects
this specific materials resistance to being fully compacted, and it does not restrict application of
the general information to fully compacted materials.

To illustrate another point we again use the chain-rule expansion for ein the energy balance
relation (41) to obtain

Since e increases with decreasing coldness, (aela8) is negative. Thus from (56)

8s0

(66)

(67)

or the temperature only increases during crushing. Therefore in this particular model changing
the volume fraction; that is, crushing the pores, generates heat which cannot be recovered.

(b) Evaluation of the response function constants
The paper on the compaction of porous aluminum by Butcher, Carroll and Holt[6] contains

data on 78% dense material subjected to impact with a flat flyer plate. The configurations of
these experiments were chosen to sustain a condition of one-dimensional strain. The impact
produced a sharp step loadtng on the specimens even wilen measored·on submicrosecond time
scales. During and after passage of the initial disturbance through the solid, data was collected
as the specimen relaxed to an equilibrium state resulting from the sustained loading of the step
wave.

One of the experimental configurations used in their paper is illustrated in Fig. 1. During the
short time in which data are collected the planar impact produces a one-dimensional-strain
stress wave along the centerline of the configuration. The disturbance propagates to the circular
mirror located at the exit buffer-window interface, and the ensuing motion of the mirror is
monitored with an optical interferometer.

It was observed in these experiments that the porous solid sustained a precursor wave of
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amplitude 0.8 x loB Pa and traveling at 4.11 kin/so If we assume that the volume fraction did not
change under the influence of this precursor wave, then rp can be uniformly divided out of eqns
(39H4l) in which case it is easily shown that

(68)

where Cp represents the precursor wave speed. Since the initial actual density of the aluminum
equals 2.77 Mg/m3

, the corresponding value for F is 467.9 x 108 Pa. Also since crushing occurs
after passage of this precursor, PCR equals the amplitude of this wave divided by the initial
volume fraction, PCR = 1.025 X 108 Pa.

The precursor wave is followed by the larger, slower compaction wave which crushes the
pores. Data relating the equilibrium pressure attained behind the compaction wave to the final
volume fraction are summarized in Fig. 2. Here the inverse of the volume fraction or the
distension ratio is plotted against pressure. In the literature on this subject the distension ratio
is the more common term, and it is usually denoted by a.

Equation (65) must be fit to the data in Fig. 2. The fit attained with k = 1.73 X 108 Pa;
k l =0.0602 x 108

; and k2 =-7.00 x 108 Pa is shown by the solid curve.
The remaining response function to be evaluated is the collapse relation (61). An obvious

simplification to this relation is to assume that the function K is a positiv~ constant. By trying
various constant values of K and n in the equations, we can see that neither K nor n seems to
affect the speeds or amplitudes of either the precursor or compaction wave. Only the rise time of
the compaction waves appears to be affected. Furthermore, if n is zero the rise time of the
compaction wave is independent of the amplitude, and if n is one the rise time of the
compaction wave decreases as the amplitude increases.

Further reflection on the problem suggests that the average pore dimension in the actual
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Fig. 2. Equilibrium data and theoretical curve used in calculations.
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material should have a great influence on the selection of K and n. In fact this dimension when
divided by the average particle velocity of the compaction wave was used to obtain an estimate
of the magnitude of ~ and a quite reasonable initial estimate of the values for K and n.
Ultimately the values of K and n were determined by empirical fit to the experimental curves.
A final value of n = 1was chosen to account for the general steepening of the compaction wave
with amplitude. A value of K = 2.5 x 1O-19/Pa3s was then determined by fit to shot 15.

(c) Numerical calculations and comparison to experiment
Several calculations were performed for the experimental configuration shown in Fig. 1. The

calculations were carried out with WONDY IV, a Lagrangian wave propagation code based on
explicit finite differencing[l5]. Because of the internal structure of this code and the similarity
of the mixture conservation equations to conventional wave code equations, incorporation was
quite direct. The only unusual feature of this procedure required that values of lp be advanced
in time by using an auxiliary integration routine to integrate relation (61). To do this the new
value of p was first computed and intermediate values of p were evaluated by interpolation
between old and new values of p. This in effect reduced (61) to an ordinary differential equation in lp

between each successive time step.
The specific experiments calculated by this procedure are listed in[6] as shots 5, 12, 14 and

15. These experiments are also explicitly labelled in Fig. 2. Information on the critical
parameters of each experiment is listed in Table 1.

The transmitted wave profiles obtained from the calculations are compared with the
experimental data in Figs. 3-6. The calculations and experimental records show the same
general behavior. A fast moving precursor of constant amplitude leads the record. This wave
raises the pressure in the solid to the yield point where crushing begins; however, no crushing
occurs until the arrival of the slower moving compaction wave. The speed of the compaction
wave depends on the magnitude of the applied load. Here the volume fraction increases
smoothly from its initial value of 0.78 to its final value which is shown in Fig. 2.

As to the comparisons between the calculations and the experiments, the agreement is good
in every case except shot 12 in Fig. 6. In Figs. 3-5 the precursor and compaction waves are in
good agreement for both speed and rise time. In Figs. 4 and 5 the amplitude of the slower
compaction wave is slightly underestimated.

Shot No.

12

14

15

Table I.

FIver Plate Semr.-le Fuf'fer ~:in';'-:-....

Material Velocity Thickness r~~tericl Thi::.c;::~~s l,:~t~ri:ll

(ml' ) (",~) (rr_~\

6C61-T6 A1 0.1262 4.47 6061.-76,\1 15.733 ~;0!:e

6061-T6 A1 0.36578 7.0535 Fused ~U8TtZ 3.2563 F\.:sr:.-; Qt:"l,;rt::

6061-T6 Al 0.24444 4.572 Fused Quartz 6.L36~ Fu'"c:.1 ~.u~ rt:c.
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Fig. 3. Comparison of theory to data from shot 5.
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Fig. 4. Comparison of theory to data from shot 15.
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Fig. 5. Comparison of theory to data from shot 14.

In Fig. 6 the calculation differs from the experimental data in several respects. Firstly, while
the calculation predicts the same precursor speed as in the other calculations and experiments,
the experimental precursor speed is somewhat slower. Secondly, the breakaway at the toe of
the compaction wave in the experimental record shows an extra hump which is not present in
the other records. Thirdly, a spike or possibly an oscillation is present at the head of the
compaction wave. No explanation is available for these phenomena, and the current form of the
mixture model apparently cannot account for this behavior. Unfortunately, even if the theory
did predict the spike, because of the nature of the wave code, the numerical algorithm would
tend to erase it.

An additional set of calculations were run for the purpose of illustrating the trend in the
results as the applied loading is increased. This time the thickness of the specimens for all
practical purposes were made infinitely large. The particle-velocity histories in Fig. 7 were
obtained from a material point originally located 5 mm. beyond the impact plane in the porous
sample. This figure clearly shows that the precursor amplitude and speed are constant from
calculation to calculation; however, the speed and rise time of the compaction wave change.

5. CONCLUSIONS

By specialization of Truesdell, Muller and Bowen's mixture work to immiscible mixtures,
we have presented a formulation for porous solids which includes not only a complete
discussion of the conservation laws for mass, momentum, and 'energy, but also extensive
treatment of the entropy inequality and the constraint that it places on the response functions.
We have shown how the assumptions of immiscibility and material rate independence lead to
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Fig. 6. Comparison of theory to data from shot 12.

the pressure scaling rules (28), and how the entropy inequality requires a pore collapse relation
wherein ,p is expressed as an odd function of the overpressure.

A more subtle result in this work is that the response functions for P and p.q cannot be
independently chosen. They are both derived from the same thermodynamic potential function.
Thus, for example, once eqn (62) was determined in the sample formulation then eqn (64) was
fixed, and while h(rp) was still arbitrary the product PiP was not.

We will close with several comments on other work referenced herein. These comments
relate mainly to the pore collapse relations and their compatibility with the entropy inequality
(56).

The P-a model of Herrmann[l] is a special case of this work. The distension ratio, a, is
the inverse of the volume fraction. Herrmann's additional assumption is that P = p.q under all
conditions. Thus (56) is always satisfied trivially. A pore collapse relation is not needed.

The ftuid-saturated-porous-media model of Garg et al. {2] should also have some cor
respondence to this work when the ftuid is not present. In this case fP is the response function
representing pore collapse and not ,po Thus (56) is not explicitly satisfied.

In Butcher's work[6] a rate relation for the distension ratio is prescribed in a manner similar
to relation (61). We note that this relation also depends on the difference between the local
pressure and an equilibrium pressure; however, an additional compliance relating an elastic
change in volume fraction to a change in pressure is also included. Thermodynamical con
straints are not considered in this work.

In Carroll and Holt's model[4] the pore collapse mechanism is investigated through the
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Fig. 7. Comparisons of theory for in-material response at propagation distance of 5 mm.

study of a hollow elastic-plastic sphere. This model which attempts to treat complex local
inertial effects yields a collapse relation of the type

D(rp) = P - p.q (69)

where D is a second-order differential operator. Here (69) replaces (61). In this case a direct
comparison is difficult since localized inertial effects would first have to be introduced into our
mixture formulation. Some attempts have been made in this direction as evidenced by the
works of Passman[l6] and Goodman and Cowin [l7]; however, this is beyond the scope of the
present work.

Finally in Davison's work[3] a relation similar to (61) is considered; however, it is written
for strain rate and not volume fraction rate. In general one might expect both the strain and
volume fraction rates to have quite similar behavior, but again this relation does not explicitly
satisfy (56).
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